background image

具有较好的抗击载荷特性
a. 蜗轮轴支承方式
蜗轮副的蜗杆位于蜗轮之上的称为上置式,位于蜗轮下面的称为下置式。
上置式的优点是,箱体比较容易密封,容易检查,不足之处是蜗杆润滑比较差。
b. 常用的蜗轮蜗杆齿形
常用的有圆柱形和圆弧回转面两种。
c. 蜗杆蜗轮材料的选择
选择材料时要充分考虑到蜗轮蜗杆传动的特点,蜗杆要选择硬度高,刚性好的材料,

蜗轮应选择耐磨和减磨性能好的材料。

d. 蜗轮齿面啮合特性的要求
e. 蜗杆传动的效率计算
f. 蜗轮蜗杆受力计算
g. 热平衡问题
由于蜗杆传动的摩擦损失功率较大,损失的功率大部分转化为热量,使油温升高。过

高的油温会大大降低润滑油的粘度,使齿面之间的油膜破坏,导致工作面直接接触产生
齿面胶合现象。为了避免产生润滑油过热现象,设计的蜗轮箱体应满足,从蜗轮箱散发出
的热量大于或至少等于动力损耗的热量。

3. 斜齿轮传动
在设计电梯用斜齿轮时应考虑以下几方面的因素:
交应变力
冲击弯曲应力
点蚀与磨损
振动和噪音
4. 制动器
a. 制动器类型
电梯制动系统应具有一个机电式制动器,当主电路断电或控制电路断电时,制动器

必须动作。切断制动器电流,至少应由两个独立的电气装置来实现。

制动器的制动作用应由导向的压缩弹簧或重锤来实现。制动力矩应足以使以额定速度

运行并载有 125%额定负载的轿厢制停。

电梯制动器最常用的是电磁制动器。
b. 制动力矩的计算
制动力矩由两部分组成:静力矩和动力矩。
静力矩和动力矩的计算方法(参见教材)
c. 制动器的发热问题
电梯在制停过程中,电梯运动部件的动能因摩擦制动而转化为制动轮上的热量,若

闸瓦表面温度过高,会降低制动轮与闸瓦的摩擦系数,以致降低制动力矩。

对大多数电梯来说,不必进行制动器的热性能计算。特别是近几年来,对于所有交通

流量密集的乘客电梯,其拖动控制系统中都采用了零速抱闸制动技术,使机械摩擦制动
过程减少到极限状态。对交通流量较少的乘客电梯和载货电梯,每小时的起动次数较少,
因而,每小时吸收的动能也较少。但对于平层速度较高或运动部件惯性较大的电梯,对其
热性能应进行分析计算