background image

obtained from Paprican’s book “Energy Cost Reduction in the Pulp and Paper Industry” and AF&PA reported 
production numbers  [7,8].

   

Unit consumption figures were adjusted so the total energy consumption matched the 

energy available for process after the powerhouse.  
 
The third step was to distribute the energy into smaller energy process blocks.  We utilized the available published 
data and adjusted the data based on our knowledge of the industry.  To minimize errors, we elected to use as large a 
database of published information as we could find to generate an average since the published data for the same 
processes vary [7-16].  

   

 

The energy use within U.S. Pulp and Paper Industry manufacturing (pulp and paper products) was broken down into 
three use categories: Electric, Steam and Direct Fuel.  Using the electrical, steam and direct fuel energy consumption 
data by pulping and paper grade, along with production data (Tables V and VI), total domestic energy consumption 
was obtained (Tables VIII and IX).  Kraft pulping, bleached and unbleached, accounts for 76% of the total energy 
consumed by pulping (Figure 3).  Pulping process energy use per ton is shown in Figure 4.  Distributions of total 
energy for paper manufacturing by product are shown in Figures 5 and 6  
 
Overall average break-down of the energy used within pulp and paper manufacturing was determined to identify 
areas of future emphasis for energy savings.  Steam energy use indicates evaporation as the largest energy user 
within pulp manufacturing and drying as the largest within papermaking  (Tables X and XI).   This is also shown in 
Figure 7 representing the energy consumption of a typical bleached hardwood kraft mill along with a printing and 
writing paper machine.  Grinding/ refining – type operations consume the largest amounts of electricity within both 
pulping and papermaking (Tables X and XI).  In pulp manufacturing 100% of the direct fuel is used in either the 
lime kilns (kraft pulping – 98.4%) or sulfur burners (sulfite pulping – 1.6%); in paper manufacturing 100% of the 
direct fuel is used either for coating drying (51%) and/or tissue drying (Yankee hoods and/or Through Air Drying 
(TAD) – 49%). 
 
OVERALL DOMESTIC ENERGY BALANCE 
Combining the consumption data (Table VIII) and the generation data (Table VII) allows the overall domestic 
energy balance to be calculated (Table XII).  There is good agreement between the net mill demand and the MECS 
Industry Demand (Table XII).    The 4.5 TBtu (223 TBtu – 218.5 TBtu) difference in purchase electricity, due to 2% 
system loses, shown in Table VII is equivalent to the 1,307 Million kWh shown above as powerhouse demand. 
 
ESTIMATED CONSUMPTION WITH “BAT” 
 
The estimated energy consumption using BAT was based on MECS / AF&PA production data along with published 
data for either modern and/or model mills [17-21].  Published information was used because modern design data 
related to new mills is limited.  The last new domestic greenfield pulp mill was built in the early 1980’s.  (Recent 
construction of new mills has occurred in Asia and South America.)  In some cases, such as sulfite pulping, there 
isn’t any data that represents a current mill design since that pulping technology, for the most part, is being phased 
out.  In cases like sulfite, the energy data used for the MECS distribution is reused.   
 
To determine BAT energy consumption, the methodology used in the MECS distribution remained the same - using 
the electrical, steam and direct fuel energy consumption data by pulping and paper grade, along with production data 
(Tables V and VI).  The BAT distribution was used to predict fuel use by back calculating through the powerhouse, 
first generating Table XIII and then back calculating Table XIV.  The efficiencies used in the powerhouse are the 
best rather than the average.  Since pulp production has been maintained, the amount of energy available from hog 
fuel and black liquor has been maintained (Table VII) causing other quantities available from other energy sources 
to float.  Powerhouse energy efficiencies were raised and energy generated from hog fuel and black liquor remained 
constant since production remained constant from MECS. 
 
The analysis showed that current design technology in the papermaking and pulping processes could reduce energy 
consumption by 25%, from 1,623 TBtu to 1,217 TBtu.  Tables XIII and XV summarize the changes.  Energy 
distribution and use within the pulp and papermaking processes was determined after applying BAT.  Applying 
BAT reduces purchased fuels, excluding electricity, to 518 TBtu (Table XIV).  BAT is a combination of new 
technologies, such as shoe presses, and improved capture and reuse of energy contained in “waste” process streams, 
such as paper machine dryer hoods and bleach plant effluents.