background image

电池。但是

GaAs 材料的价格不菲,因而在很大程度上限制了用 GaAs 电池的普及。

铜铟硒电池

  铜铟硒

CuInSe2 简称 CIC.CIS 材料的能降为 1.leV,适于太阳光的光电转换,另外,

CIS 薄膜太阳电池不存在光致衰退问题。因此,CIS 用作高转换效率薄膜太阳能电池材料
也引起了人们的注目。

  

CIS 电池薄膜的制备主要有真空蒸镀法和硒化法。真空蒸镀法是采用各自的蒸发源

蒸镀铜,铟和硒,硒化法是使用

H2Se 叠层膜硒化,但该法难以得到组成均匀的

CIS。CIS 薄膜电池从 80 年代最初 8%的转换效率发展到目前的 15%左右。日本松下电气
工业公司开发的掺镓的

CIS 电池,其光电转换效率为 15.3%(面积 1cm2) 。1995 年美国可

再生能源研究室研制出转换效率

17.l%的 CIS 太阳能电池,这是迄今为止世界上该电池

的最高转换效率。预计到

2000 年 CIS 电池的转换效率将达到 20%,相当于多晶硅太阳能

电池。

 CIS 作为太阳能电池的半导体材料,具有价格低廉,性能良好和工艺简单等优点,

将成为今后发展太阳能电池的一个重要方向。唯一的问题是材料的来源,由于铟和硒都
是比较稀有的元素,因此,这类电池的发展又必然受到限制。

  碲化镉太阳能电池

  

CdTe 是

Ⅱ-Ⅵ 族化合物半导体,带隙 1.5eV,与太阳光谱非常匹配,最适合于光电能

量转换,是一种良好的

PV 材料,具有很高的理论效率(28%),性能很稳定,一直被

光伏界看重,是技术上发展较快的一种薄膜电池。碲化镉容易沉积成大面积的薄膜,沉
积速率也高。

CdTe 薄膜太阳电池通常以 CdS /CdT e 异质结为基础。尽管 CdS 和 CdTe 和

晶格常数相差

10%,但它们组成的异质结电学性能优良,制成的太阳电池的填充因子高

F F =0.75。

  制备

CdTe 多晶薄膜的多种工艺和技术已经开发出来,如近空间升华、电沉积、PVD、

CVD、CBD、丝网印刷、溅射、真空蒸发等。丝网印刷烧结法:由含 CdTe、CdS 浆料进行丝
网印刷

CdTe、CdS 膜,然后在 600~700

℃可控气氛下进行热处理 1h 得大晶粒薄膜. 近空

间升华法:采用玻璃作衬底,衬底温度

500~600

℃,沉积速率 10μm/min. 真空蒸发法:

CdTe 从约 700

℃加热钳埚中升华,冷凝在 300~400℃衬底上,典型沉积速率 1nm/s. 

CdTe 吸收层,CdS 作窗口层半导体异质结电池的典型结构:减反射膜/玻璃/

SnO2:F)/CdS/P-CdTe/背电极。电池的实验室效率不断攀升,最近突 16%。20 世纪 90

年代初,

CdTe 电池已实现了规模化生产,但市场发展缓慢,市场份额一直徘徊在 1%左

右。商业化电池效率平均为

8%-10%。

   人们认为,CdTe 薄膜太阳电池是太阳能电池中最容易制造的,因而它向商品化进展
最快。提高效率就是要对电池结构及各层材料工艺进行优化,适当减薄窗口层

CdS 的厚

度,可减少入射光的损失,从而增加电池短波响应以提高短路电流密度,较高转换效率

CdTe 电池就采用了较薄的 CdS 窗口层而创了最高纪录。要降低成本,就必须将 CdTe 

的沉积温度降到

550 

℃以下,以适于廉价的玻璃作衬底;实验室成果走向产业,必须经

过组件以及生产模式的设计、研究和优化过程。近年来,不仅有许多国家的研究小组已经
能够在低衬底温度下制造出转换效率

12%以上的 CdTe 太阳电池,而且在大面积组件方

面取得了可喜的进展,许多公司正在进行

CdTe 薄膜太阳电池的中试和生产厂的建设。有

的已经投产。

在广泛深入的应用研究基础上,国际上许多国家的

CdTe 薄膜太阳电池已由实验室研究